MAY] MUM- NORMAL-STRESS THEORY FOR BRITTLE MATERIALS
THE MAXIMUM =NORMAL-STRESS~(MNS)~THEORY STATES THAT FAILURE
OCCURS WHENEVER ONE OF THE THREE PRINCIPAL STRESSES EQUALS
0K EXCEEDS THE STRENGTH.

THE FAILURE CRITERION FOR THE MNS THEORY IS :
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 MOD[FICATIONS OF THE MOHR THEORY FOR BRITTLE MATERIALS

WE WILL DISCUSS 2 MODIF(CATIONS OF THE MOHR THEORY FOR
BRITTLE MATERIALS : THE BRITTLE- COULOMB-MOHR THEDRY AND
THE MOD|FIED MOHR THEBRY.

THEFAILURE  CRITERION  FOR THE BRITTLE=COULOMB=MOHR™(BCM) THEDRY
IS AS FoLLowS FOR PLANE STRESS:
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THE FAILURE CRITERION FOR THE MODTEIED MOHR (MM THEORY (S AS
FOLLOWS £OR PLANE STRESS:
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SUDDEN BRITTLE FRACTURE OF SO-CALLED DUCTILE MATERIALS
IS POSSIBLE, AND DESIGNERS MUST BE AWARE OF THIS DANGER
EINEAR=ELASTIC FRACTURE "MECHANICS"CEERM) S A THEORY VSED
TO PREDICT THE BEHAVIOR OF CRACKS IN MATERIALS UNDER STRESS.

FOR AN INFINITE PLATE LOADED BY AN APPLIED UNIAX|AL STRESS

o THE MAX(MUM STRESS OCCURS AT (2a,0) AND IS GIVEN BY
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FOR A MICRGO PICALLY FINE CRACK, b—20 AND (§y)ae >

THIS INFINITELY SHARP CRACK IS PHYSICALLY IMPOSSIBLE | AND THI(S
OBSERVATION [NSPIRED GRIFFITH'S wWORK ON CRACK GROWTH (~1a20),
IRWIN EXPANDED GRIFFITH'S WORK BY INTRODVUNG THE SERESS!

\NTENSITY=FACTOR | WHICH IS GIVEN BY
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FOR A MODE T CRACK IN AN INFIN(TE PLATE.
(INDICATED BY THE SUBSCRIPT)




THERE ARE 2 DISTINCT CRACK PROPAGATION MODES
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MODE T:OPENING ~ MODE IL:SLIDING MoDE IIT.* TEARING

MODE T IS THE moST COMMDN, SO wE wiLL FOCUS ON THIS
MODE FDR OUR CLASS.

THE STRESS INTENSITY FACTOR 1S A FUNCTION OF GEOMETRY,
S\ZE & SHAPE OF THE CRACK, AND THE TYPE of LOADING. FOR
LOAD AND GEDMETRIC CONFIGURATIONS,

= ,] 1 wH = STRERS INTENSITY
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WHEN Ky REMCHES A CRIMICAL VALVE (Kre), CRACK PROPAGATION

|N{TIATES. THE CRITICAL=STRESSTINTENS ITY-FACTOR Kz , 'S A

MATERIAL PROPERTY (ALSO CALLED THE FRACTURE TOUGHNESS OF THE
CRACK MODE, PROCESSING

MATERAL) THAT EPENDS OoN THE MATERIAL, ,

OF THE MA)TERIAL TEMPERATURE, LOADING RATE, AND THE STATE OF STRESS

AT THE CRACK SITE,

+HE STRENGTH-TO-STRESS RATIO CAN BE USED AS A FRCTOROF SAFETY
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